Database Management System (CS403)

VU

Lecture No. 14

Reading Material

“Database Systems Principles, Design and Implementation”
written by Catherine Ricardo, Maxwell Macmillan.

Section 6.1 — 6.3.3

“Database
Ramakrishnan, Johannes Gehrke, McGraw-Hill

Management Systems”,

2nd

edition, Raghu

Overview of Lecture

o O O O

Logical Database Design

Introduction to Relational Data Model
Basic properties of a table
Mathematical and database relations

From this lecture we are going to discuss the logical database design phase of

database development process. Logical database design, like conceptual database

design is our database design; it represents the structure of data that we need to store

to fulfill the requirements of the users or organization for which we are developing the

system. However there are certain differences between the two that are presented in

the table below:

Conceptual Database Design

Logical Database Design

Developed in a semantic data model

In legacy data models (relational

1
(generally E-R data model) generally in current age)
.]) Free of particular DBMS in which
Free of data model in which going to be . '
2 _] going to be implemented; many/any
implemented; many/any possible)
possible
Obtained by translating the
3 Results from Analysis Phase conceptual database design into
another data model
124

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

4 Represented graphically Descriptive

5 More expressive Relatively less expressive
Going to be transformed and then _ _

6 _ Going to be implemented
implemented

You can think more, give a try

Table 1: Differences between Conceptual and Logical Database Designs

As we have already discussed in previous lectures and as is given in row 2 of the
above table, the conceptual database design can be transformed into any data model,
like, hierarchical, network, relational or object-oriented. So the study of the logical
database design requires first involves the study of the data model/(s) that we can
possibly use for the purpose. However, in the current age, since early eighties, the
most popular choice for the logical database design is the relational data model; so
much popular that today it can be considered to be the only choice. Why? Because of
its features we are going to discuss in today’s lecture. That is why rather than studying
different data models we will be studying only the relational data model. Once we
study this, the development of logical database design is transformation of conceptual
database design to relational one and the process is very simple and straightforward.
So from today’s lecture our discussion starts on the relational data model. Just for the
sake of revision we repeat the definition of data model “a set of constructs/tools used
to develop a database design; generally consists of three components which are
constructs, manipulation language and integrity constraints”. We have discussed it
earlier that the later part of the definition (three components) fits precisely with the

relational data model (RDM)), that is, it has these components defined clearly.

Relational Data Model
The RDM is popular due to its two major strengths and they are:

o Simplicity
o Strong Mathematical Foundation
The RDM is simple, why, there is just one structure and that is a relation or a table.

Even this single structure is very easy to understand, so a user of even of a moderate

125

© Copyright Virtual University of Pakistan

Database Management System (CS403)

VU

genius can understand it easily. Secondly, it has a strong mathematical foundation that

gives many advantages, like:

o Anything included/defined in RDM has got a precise meaning since it is based

on mathematics, so there is no confusion.

If we want to test something regarding RDM we can test it mathematically, if it
works mathematically it will work with RDM (apart from some exceptions).

The mathematics not only provided the RDM the structure (relation) but also
well defined manipulation languages (relational algebra and relational calculus).

It provided RDM certain boundaries, so any modification or addition we want to
make in RDM, we have to see if it complies with the relational mathematics or

not. We cannot afford to cross these boundaries since we will be losing the huge

advantages provided by the mathematical backup.
“An IBM scientist E.F. Codd proposed the relational data model in 1970. At that
time most database systems were based on one of two older data models (the
hierarchical model and the network model); the relational model revolutionized
the database field and largely replaced these earlier models. Prototype relational
database management systems were developed in pioneering research projects at
IBM and UC-Berkeley by the mid-70s, and several vendors were offering
relational database products shortly thereafter. Today, the relational model is by
far the dominant data model and is the foundation for the leading DBMS
products, including IBM's DB2 family, Informix, Oracle, Sybase, Microsoft's
Access and SQLServer, FoxBase, and Paradox. Relational database systems are

ubiquitous in the marketplace and represent a multibillion dollar industry” [1]

The RDM is mainly used for designing/defining external and conceptual schemas;

however to some extent physical schema is also specified in it. Separation of

conceptual and physical levels makes data and schema manipulation much easier,

contrary to previous data models. So the relational data model also truly supports

“Three Level Schema Architecture”.

Introduction to the Relational Data model

The RDM is based on a single structure and that is a relation. Speaking in terms of the

E-R data model, both the entity types and relationships are represented using relations

© Copyright Virtual University of Pakistan

126

Database Management System (CS403) VU

in RDM. The relation in RDM is similar to the mathematical relation however
database relation is also represented in a two dimensional structure called table. A
table consists of rows and columns. Rows of a table are also called tuples. A row or
tuple of a table represents a record or an entity instance, where as the columns of the

table represent the properties or attributes.

stiD stName ciName doB sex
S001 M. Suhail MCS 12/6/84 M
S002 M. Shahid BCS 3/9/86 M
S003 Naila S. MCS 7/8/85 F
S004 Rubab A. MBA 23/4/86 F
S005 Ehsan M. BBA 22/7/88 M

Table 2: A database relation represented in the form of a table

In the above diagram, a table is shown that consists of five rows and five columns.
The top most rows contain the names of the columns or attributes whereas the rows
represent the records or entity instances. There are six basic properties of the database
relations which are:
Each cell of a table contains atomic/single value
A cell is the intersection of a row and a column, so it represents a value of an
attribute in a particular row. The property means that the value stored in a single cell
is considered as a single value. In real life we see many situations when a
property/attribute of any entity contains multiple values, like, degrees that a person
has, hobbies of a student, the cars owned by a person, the jobs of an employee. All
these attributes have multiple values; these values cannot be placed as the value of a
single attribute or in a cell of the table. It does not mean that the RDM cannot
handle such situations, however, there are some special means that we have to adopt
in these situations, and they can not be placed as the value of an attribute because an
attribute can contain only a single value. The values of attributes shown in table 1

are all atomic or single.

127

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

e FEach column has a distinct name; the name of the attribute it represents

Each column has a heading that is basically the name of the attribute that the
column represents. It has to be unique, that is, a table cannot have duplicated
column/attribute names. In the table 2 above, the bold items in the first row

represent the column/attribute names.

e The values of the attributes come from the same domain

Each attribute is assigned a domain along with the name when it is defined. The
domain represents the set of possible values that an attribute can have. Once the
domain has been assigned to an attribute, then all the rows that are added into the
table will have the values from the same domain for that particular column. For
example, in the table 2 shown above the attribute doB (date of birth) is assigned the
domain “Date”, now all the rows have the date value against the attribute doB. This

attribute cannot have a text or numeric value.

e The order of the columns is immaterial

If the order of the columns in a table is changed, the table still remains the same.

Order of the columns does not matter.

e The order of the rows is immaterial

As with the columns, if rows’ order is changed the table remains the same.

e Each row/tuple/record is distinct, no two rows can be same

Two rows of a table cannot be same. The value of even a single attribute has to be

different that makes the entire row distinct.

There are three components of the RDM, which are, construct (relation), manipulation
language (SQL) and integrity constraints (two). We have discussed the relation so far;

the last two components will be discussed later. In the next section we are going to

128

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

discuss the mathematical relations briefly that will help to link the mathematical

relations with the database relations and will help in a better understanding of the later.

Mathematical Relations
Consider two sets

A={x,y} B=1{2,4,06}
Cartesian product of these sets (A x B) is a set that consists of ordered pairs where
first element of the ordered pair belongs to set A where as second element belongs to
set B, as shown below:
A X B={(x,2), (x,4), (x,6), (¥,2), (v:4), (¥,0)}
A relation is some subset of this Cartesian product, For example,
o RI={(x.2), (¥,2),(x,6),(x,4)}
* R2={(x4),(y,6), (v 4}
The same notion of Cartesian product and relations can be applied to more than two

sets, e.g. in case of three sets, we will have a relation of ordered triplets

Applying the same concept in a real world scenario, consider two sets Name and Age
having the elements:

e Name = {Ali, Sana, Ahmed, Sara}

o Age={15,16,17,18,....... 25}
Cartesian product of Name & Age
Name X Age= {(Ali,l5), (Sana,15), (Ahmed,15), (Sara,l5),, (Ahmed,25),
(Sara,25)}

Now consider a subset CLASS of this Cartesian product

CLASS = {(Ali, 18), (Sana, 17), (Ali, 20), (Ahmed, 19)}

This subset CLASS is a relation mathematically, however, it may represent a class in
the real world where each ordered pair represents a particular student mentioning the
name and age of a student. In the database context each ordered pair represents a tuple
and elements in the ordered pairs represent values of the attributes. Think in this way,
if Name and Age represent all possible values for names and ages of students, then
any class you consider that will definitely be a subset of the Cartesian product of the

Name and Age. That is, the name and age combination of all the students of any class

129

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

will be included in the Cartesian product and if we take out particulars ordered pairs

that are related to a class then that will be a subset of the Cartesian product, a relation.

Database Relations

Let A1, A2, A3, ..., An be some attributes and D1, D2, D3,..., Dn be their domains A
relation scheme relates certain attributes with their domain in context of a relation. A
relation scheme can be represented as:

R=(Al:D1, A2:D2, , An:Dn), for example,

STD Scheme = (stld:Text, stName: Text, stAdres:Text, doB:Date) OR

STD(stld, stName, stAdres, doB)
Whereas the stld, stName, stAdres and doB are the attribute names and Text, Text,
Text and Date are their respective domains. A database relation as per this relation
scheme can be:

STD={(stld:S001, stName:Ali, stAdres: Lahore, doB:12/12/76), (stId:S003,
stName:A. Rehman, stAdres: RWP, doB:2/12/77)} OR

STD={(S001, Ali, Lahore, 12/12/76), (S003, A. Rehman, RWP, 2/12/77)}
The above relation if represented in a two dimensional structure will be called a table

as is shown below:

stld stName stAdres |doB
S001 Al Lahore [12/12/76

S002 A. Rehman |[RWP |2/12/77

With this, today’s lecture is finished; the discussion on RDM will be continued in the

next lecture.

Summary
In this lecture we have started the discussion on the logical database design that we

develop from the conceptual database design. The later is generally developed using
E-R data model, whereas for the former RDM is used. RDM is based on the theory of
mathematical relations; a mathematical relation is subset of the Cartesian product of

two or more sets. Relations are physically represented in the form of two-dimensional

130

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

structure called table, where rows/tuples represent records and columns represent the

attributes.

Exercise:

Define different attributes (assigning name and domain to each) for an entity
STUDENT, then apply the concept of Cartesian product on the domains of these
attributes, then consider the records of your class fellows and see if it is the subset of

the Cartesian product.

131

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

Lecture No. 15

Reading Material

Overview of Lecture

Database and Math Relations

Degree and Cardinality of Relation

Integrity Constraints

Transforming conceptual database design into logical database design
Composite and multi-valued Attributes

Identifier Dependency

O 0 0 0 0 O

In the previous lecture we discussed relational data model, its components and
properties of a table. We also discussed mathematical and database relations. Now we

will discuss the difference in between database and mathematical relations.

Database and Math Relations

We studied six basic properties of tables or database relations. If we compare these
properties with those of mathematical relations then we find out that properties of
both are the same except the one related to order of the columns. The order of
columns in mathematical relations does matter, whereas in database relations it does
not matter. There will not be any change in either math or database relations if we
change the rows or tuples of any relation. It means that the only difference in between
these two is of order of columns or attributes. A math relation is a Cartesian product
of two sets. So if we change the order of theses two sets then the outcome of both will
not be same. Therefore, the math relation changes by changing the order of columns.
For Example , if there is a set A and a set B if we take Cartesian product of A and B
then we take Cartesian product of B and A they will not be equal , so

AxB~ABx A
Rests of the properties between them are same.

132

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

Degree of a Relation
We will now discuss the degree of a relation not to be confused with the degree of a

relationship. You would be definitely remembering that the relationship is a link or
association between one or more entity types and we discussed it in E-R data model.
However the degree of a relation is the number of columns in that relation. For

Example consider the table given below:

STUDENT

StID stName clName Sex
S001 Suhail MCS M
S002 Shahid BCS M
S003 Naila MCS F
S004 Rubab MBA F
S005 Ehsan BBA M

Table 1: The STUDENT table

Now in this example the relation STUDENT has four columns, so this relation has
degree four.

Cardinality of a Relation

The number of rows present in a relation is called as cardinality of that relation. For
example, in STUDENT table above, the number of rows is five, so the cardinality of
the relation is five.

Relation Keys

The concept of key and all different types of keys is applicable to relations as well.
We will now discuss the concept of foreign key in detail, which will be used quite
frequently in the RDM.

Foreign Key
An attribute of a table B that is primary key in another table A is called as foreign key.
For Example, consider the following two tables EMP and DEPT:

EMP (empld, empName, qual, depld)
DEPT (depld, depName, numEmp)

In this example there are two relations; EMP is having record of employees, whereas
DEPT is having record of different departments of an organization. Now in EMP the
primary key is empld, whereas in DEPT the primary key is depld. The depld which is
primary key of DEPT is also present in EMP so this is a foreign key.

Requirements/Constraints of Foreign Key

Following are some requirements / constraints of foreign key:

There can be more than zero, one or multiple foreign keys in a table, depending on
how many tables a particular table is related with. For example in the above example
the EMP table is related with the DEPT table, so there is one foreign key depld,

133

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

whereas DEPT table does not contain any foreign key. Similarly, the EMP table may
also be linked with DESIG table storing designations, in that case EMP will have
another foreign key and alike.

The foreign key attribute, which is present as a primary key in another relation is
called as home relation of foreign key attribute, so in EMP table the depld is foreign
key and its home relation is DEPT.

The foreign key attribute and the one present in another relation as primary key can
have different names, but both must have same domains. In DEPT, EMP example,
both the PK and FK have the same name; they could have been different, it would not
have made any difference however they must have the same domain.

The primary key is represented by underlining with a solid line, whereas foreign key
is underlined by dashed or dotted line.

Primary Key
Foreign Key
Integrity Constraints
Integrity constraints are very important and they play a vital role in relational data
model. They are one of the three components of relational data model. These
constraints are basic form of constraints, so basic that they are a part of the data model,
due to this fact every DBMS that is based on the RDM must support them.

Entity Integrity Constraint:

It states that in a relation no attribute of a primary key (PK) can have null value. If a
PK consists of single attribute, this constraint obviously applies on this attribute, so it
cannot have the Null value. However, if a PK consists of multiple attributes, then
none of the attributes of this PK can have the Null value in any of the instances.

Referential Integrity Constraint:

This constraint is applied to foreign keys. Foreign key is an attribute or attribute
combination of a relation that is the primary key of another relation. This constraint
states that if a foreign key exists in a relation, either the foreign key value must match
the primary key value of some tuple in its home relation or the foreign key value must
be completely null.

Significance of Constraints:

By definition a PK is a minimal identifier that is used to identify tuples uniquely. This
means that no subset of the primary key is sufficient to provide unique identification
of tuples. If we were to allow a null value for any part of the primary key, we would
be demonstrating that not all of the attributes are needed to distinguish between tuples,
which would contradict the definition.

Referential integrity constraint plays a vital role in maintaining the correctness,
validity or integrity of the database. This means that when we have to ensure the
proper enforcement of the referential integrity constraint to ensure the consistency and
correctness of database. How? In the DEPT, EMP example above deptld in EMP is
foreign key; this is being used as a link between the two tables. Now in every instance
of EMP table the attribute deptld will have a value, this value will be used to get the
name and other details of the department in which a particular employee works. If the
value of deptld in EMP is Null in a row or tuple, it means this particular row is not
related with any instance of the DEPT. From real-world scenario it means that this
particular employee (whose is being represented by this row/tuple) has not been

134

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

assigned any department or his/her department has not been specified. These were
two possible conditions that are being reflected by a legal value or Null value of the
foreign key attribute. Now consider the situation when referential integrity constrains
is being violated, that is, EMP.deptld contains a value that does not match with any of
the value of DEPT.deptld. In this situation, if we want to know the department of an
employee, then ooops, there is no department with this Id, that means, an employee
has been assigned a department that does not exist in the organization or an illegal
department. A wrong situation, not wanted. This is the significance of the integrity
constraints.

Null Constraints:

A Null value of an attribute means that the value of attribute is not yet given, not
defined yet. It can be assigned or defined later however. Through Null constraint we
can monitor whether an attribute can have Null value or not. This is important and we
have to make careful use of this constraint. This constraint is included in the
definition of a table (or an attribute more precisely). By default a non-key attribute
can have Null value, however, if we declare an attribute as Not Null, then this
attribute must be assigned value while entering a record/tuple into the table containing
that attribute. The question is, how do we apply or when do we apply this constraint,
or why and when, on what basis we declare an attribute Null or Not Null. The answer
is, from the system for which we are developing the database; it is generally an
organizational constraint. For example, in a bank, a potential customer has to fill in a
form that may comprise of many entries, but some of them would be necessary to fill
in, like, the residential address, or the national Id card number. There may be some
entries that may be optional, like fax number. When defining a database system for
such a bank, if we create a CLIENT table then we will declare the must attributes as
Not Null, so that a record cannot be successfully entered into the table until at least
those attributes are not specified.

Default Value:

This constraint means that if we do not give any value to any particular attribute, it
will be given a certain (default) value. This constraint is generally used for the
efficiency purpose in the data entry process. Sometimes an attribute has a certain
value that is assigned to it in most of the cases. For example, while entering data for
the students, one attribute holds the current semester of the student. The value of this
attribute is changed as a students passes through different exams or semesters during
its degree. However, when a student is registered for the first time, it is generally
registered in the first semesters. So in the new records the value of current semester
attribute is generally 1. Rather than expecting the person entering the data to enter 1 in
every record, we can place a default value of 1 for this attribute. So the person can
simply skip the attribute and the attribute will automatically assume its default value.

Domain Constraint:

This is an essential constraint that is applied on every attribute, that is, every attribute
has got a domain. Domain means the possible set of values that an attribute can have.
For example, some attributes may have numeric values, like salary, age, marks etc.
Some attributes may possess text or character values, like, name and address. Yet
some others may have the date type value, like date of birth, joining date. Domain
specification limits an attribute the nature of values that it can have. Domain is
specified by associating a data type to an attribute while defining it. Exact data type
name or specification depends on the particular tool that is being used. Domain helps

135

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

to maintain the integrity of the data by allowing only legal type of values to an
attribute. For example, if the age attribute has been assigned a numeric data type then
it will not be possible to assign a text or date value to it. As a database designer, this is
your job to assign an appropriate data type to an attribute. Another perspective that
needs to be considered is that the value assigned to attributes should be stored
efficiently. That is, domain should not allocate unnecessary large space for the
attribute. For example, age has to be numeric, but then there are different types of
numeric data types supported by different tools that permit different range of values
and hence require different storage space. Some of more frequently supported
numeric data types include Byte, Integer, and Long Integer. Each of these types
supports different range of numeric values and takes 1, 4 or 8 bytes to store. Now, if
we declare the age attribute as Long Integer, it will definitely serve the purpose, but
we will be allocating unnecessarily large space for each attribute. A Byte type would
have been sufficient for this purpose since you won’t find students or employees of
age more than 255, the upper limit supported by Byte data type. Rather we can further
restrict the domain of an attribute by applying a check constraint on the attribute. For
example, the age attribute although assigned type Byte, still if a person by mistake
enters the age of a student as 200, if this is year then it is not a legal age from today’s
age, yet it is legal from the domain constraint perspective. So we can limit the range
supported by a domain by applying the check constraint by limiting it up to say 30 or
40, whatever is the rule of the organization. At the same time, don’t be too sensitive
about storage efficiency, since attribute domains should be large enough to cater the
future enhancement in the possible set of values. So domain should be a bit larger
than that is required today. In short, domain is also a very useful constraint and we
should use it carefully as per the situation and requirements in the organization.

RDM Components

We have up till now studied following two components of the RDM, which are the
Structure and Entity Integrity Constraints. The third part, that is, the Manipulation
Language will be discussed in length in the coming lectures.

Designing Logical Database

Logical data base design is obtained from conceptual database design. We have seen
that initially we studied the whole system through different means. Then we identified
different entities, their attributes and relationship in between them. Then with the help
of E-R data model we achieved an E-R diagram through different tools available in
this model. This model is semantically rich. This is our conceptual database design.
Then as we had to use relational data model so then we came to implementation phase
for designing logical database through relational data model.

The process of converting conceptual database into logical database involves
transformation of E-R data model into relational data model. We have studied both
the data models, now we will see how to perform this transformation.

Transforming Rules

Following are the transforming rules for converting conceptual database into logical
database design:
The rules are straightforward , which means that we just have to follow the rules

mentioned and the required logical database design would be achieved
136

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

There are two ways of transforming first one is manually that is we analyze and
evaluate and then transform. Second is that we have CASE tools available with us
which can automatically convert conceptual database into required logical database
design

If we are using CASE tools for transforming then we must evaluate it as there are
multiple options available and we must make necessary changes if required.

Mapping Entity Types

Following are the rules for mapping entity types:

Each regular entity type (ET) is transformed straightaway into a relation. It means that
whatever entities we had identified they would simply be converted into a relation and
will have the same name of relation as kept earlier.

Primary key of the entity is declared as Primary key of relation and underlined.
Simple attributes of ET are included into the relation

For Example, figure 1 below shows the conversion of a strong entity type into
equivalent relation:

STUDENT (stld, stName, stDoB)

Fig. 1: An example strong entity type

Composite Attributes

These are those attributes which are a combination of two or more than two attributes.
For address can be a composite attribute as it can have house no, street no, city code
and country , similarly name can be a combination of first and last names. Now in
relational data model composite attributes are treated differently. Since tables can
contain only atomic values composite attributes need to be represented as a separate
relation

For Example in student entity type there is a composite attribute Address, now in E-R
model it can be represented with simple attributes but here in relational data model,
there is a requirement of another relation like following:

137

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

stld @ stDoB

STUDENT

areaCode

STUDENT (stld, stName, stDoB)
STDADRES (stld, hNo, strNo, country, cityCode, city, areaCode)

Fig. 2: Transformation of composite attribute

Figure 2 above presents an example of transforming a composite attribute into RDM,
where it is transformed into a table that is linked with the STUDENT table with the
primary key

Multi-valued Attributes

These are those attributes which can have more than one value against an attribute.
For Example a student can have more than one hobby like riding, reading listening to
music etc. So these attributes are treated differently in relational data model.
Following are the rules for multi-valued attributes:-

An Entity type with a multi-valued attribute is transformed into two relations

One contains the entity type and other simple attributes whereas the second one has
the multi-valued attribute. In this way only single atomic value is stored against every
attribute

The Primary key of the second relation is the primary key of first relation and the
attribute value itself. So in the second relation the primary key is the combination of
two attributes.

138

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

All values are accessed through reference of the primary key that also serves as

stld @ stDoB

STUDENT

stHobby

areaCode

STUDENT (stld, stName, stDoB)
STDADRES (stld, hNo, strNo, country, cityCode, city, areaCode)
STHOBBY (stld, stHobby)

) Fig. 3: Transformation of multi-valued attribute
foreign key.

Conclusion

In this lecture we have studied the difference between mathematical and database
relations. The concepts of foreign key and especially the integrity constraints are very
important and are basic for every database. Then how a conceptual database is
transformed into logical database and in our case it is relational data model as it is the
most widely used. We have also studied certain transforming rules for converting E-R
data model into relational data model. Some other rule for this transformation will be
studied in the coming lectures

You will receive exercise at the end of this topic.

139

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

Lecture No. 16

Reading Material

“Database Systems Principles, Design and Implementation”

written by Catherine Ricardo, Maxwell Macmillan. Page 209

Overview of Lecture:

o Mapping Relationships
Binary Relationships

Unary Relationships

Data Manipulation Languages

o O O

In the previous lecture we discussed the integrity constraints. How conceptual
database is converted into logical database design, composite and multi-valued

attributes. In this lecture we will discuss different mapping relationships.

Mapping Relationships

We have up till now converted an entity type and its attributes into RDM. Before
establishing any relationship in between different relations, it is must to study the
cardinality and degree of the relationship. There is a difference in between relation
and relationship. Relation is a structure, which is obtained by converting an entity
type in E-R model into a relation, whereas a relationship is in between two relations
of relational data model. Relationships in relational data model are mapped according
to their degree and cardinalities. It means before establishing a relationship there

cardinality and degree is important.

Binary Relationships

Binary relationships are those, which are established between two entity type.

Following are the three types of cardinalities for binary relationships:

140

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

o One to One
o One to Many
o Many to Many
In the following treatment in each of these situations is discussed.

One to Many:
In this type of cardinality one instance of a relation or entity type is mapped with

many instances of second entity type, and inversely one instance of second entity type
is mapped with one instance of first entity type. The participating entity types will be
transformed into relations as has been already discussed. The relationship in this
particular case will be implemented by placing the PK of the entity type (or
corresponding relation) against one side of relationship will be included in the entity
type (or corresponding relation) on the many side of the relationship as foreign key
(FK). By declaring the PK-FK link between the two relations the referential integrity
constraint is implemented automatically, which means that value of foreign key is

either null or matches with its value in the home relation.

For Example, consider the binary relationship given in the figure 1 involving two
entity types PROJET and EMPLOYEE. Now there is a one to many relationships
between these two. On any one project many employees can work and one employee

can work on only one project.

141

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

1
[N
PROJECT EMPLOYEE

Fig. 1: A one to many relationship

The two participating entity types are transformed into relations and the relationship is
implemented by including the PK of PROJECT (prld) into the EMPLOYEE as FK.

So the transformation will be:

PROJECT (prld, prDura, prCost)

The PK of the PROJECT has been included in EMPLOYEE as FK; both keys do not

need to have same name, but they must have the same domain.

Minimum Cardinality:
This is a very important point, as minimum cardinality on one side needs special

attention. Like in previous example an employee cannot exist if project is not assigned.

So in that case the minimum clardinality has to be one. On the other hand if an
instance of EMPLOYEE can exist with out being linked with an instance of the
PROJECT then the minimum cardinality has to be zero. If the minimum cardinality is
zero, then the FK is defined as normal and it can have the Null value, on the other
hand if it is one then we have to declare the FK attribute(s) as Not Null. The Not Null
constraint makes it a must to enter the value in the attribute(s) whereas the FK
constraint will enforce the value to be a legal one. So you have to see the minimum

cardinality while implementing a one to many relationship.

Many to Many Relationship:
In this type of relationship one instance of first entity can be mapped with many

instances of second entity. Similarly one instance of second entity can be mapped
with many instances of first entity type. In many to many relationship a third table is

created for the relationship, which is also called as associative entity type. Generally,

142

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

the primary keys of the participating entity types are used as primary key of the third
table.

For Example, there are two entity types BOOK and STD (student). Now many
students can borrow a book and similarly many books can be issued to a student, so in
this manner there is a many to many relationship. Now there would be a third relation
as well which will have its primary key after combining primary keys of BOOK and
STD. We have named that as transaction TRANS. Following are the attributes of

these relations: -

o STD (stld, sName, sFname)
o BOOK (bkId, bkTitle, bkAuth)
o TRANS (stld,bkld, isDate,rtDate)

Now here the third relation TRANS has four attributes first two are the primary keys
of two entities whereas the last two are issue date and return date.

One to One Relationship:
This is a special form of one to many relationship, in which one instance of first entity

type is mapped with one instance of second entity type and also the other way round.
In this relationship primary key of one entity type has to be included on other as
foreign key. Normally primary key of compulsory side is included in the optional side.
For example, there are two entities STD and STAPPLE (student application for
scholarship). Now the relationship from STD to STAPPLE is optional whereas
STAPPLE to STD is compulsory. That means every instance of STAPPLE must be
related with one instance of STD, whereas it is not a must for an instance of STD to
be related to an instance of STAPPLE, however, if it is related then it will be related
to one instance of STAPPLE, that is, one student can give just one scholarship

application. This relationship is shown in the figure below:

143

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

SCAPPL

D

STD

Fig. 2: A one to one relationship

While transforming, two relations will be created, one for STD and HOBBY each. For
relationship PK of either one can be included in the other, it will work. But preferably,
we should include the PK of STD in HOBBY as FK with Not Null constraint imposed
on it.
STD (stld, stName)

The advantage of including the PK of STD in STAPPLE as FK is that any instance of
STAPPLE will definitely have a value in the FK attribute, that is, stld. Whereas if we
do other way round; we include the PK of STAPPLE in STD as FK, then since the
relationship is optional from STD side, the instances of STD may have Null value in
the FK attribute (scld), causing the wastage of storage. More the number records with

Null value more wastage.

Unary Relationship

These are the relationships, which involve a single entity. These are also called
recursive relationships. Unary relationships may have one to one, one to many and
many to many cardinalities. In unary one to one and one to may relationships, the PK
of same entity type is used as foreign key in the same relation and obviously with the
different name since same attribute name cannot be used in the same table. The

example of one to one relationship is shown in the figure below:

144

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

@ empName EMPLOYEE (empld, empName, empAdr, mgr)

EMPLOYEE @
@ @ STUDENT (stld, stName, roommate)

STUDENT @
(b)

Fig. 3: One to one relationships (a) one to many (b) one to one
and their transformation

In many to many relationships another relation is created with composite key. For
example there is an entity type PART may have many to many recursive relationships,
meaning one part consists of many parts and one part may be used in many parts. So
in this case this is a many to many relationship. The treatment of such a relationship is

shown in the figure below:

@
@l ¢

PART (partld, partName)
SUB-PART (partld, component)

Fig. 4: Recursive many to many relationship
and transformation

Super / Subtype Relationship:
Separate relations are created for each super type and subtypes. It means if there is

one super type and there are three subtypes, so then four relations are to be created.
After creating these relations then attributes are assigned. Common attributes are
assigned to super type and specialized attributes are assigned to concerned subtypes.

Primary key of super type is included in all relations that work for both link and

145

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

identity. Now to link the super type with concerned subtype there is a requirement of
descriptive attribute, which is called as discriminator. It is used to identify which
subtype is to be linked. For Example there is an entity type EMP which is a super type,
now there are three subtypes, which are salaried, hourly and consultants. So now there
is a requirement of a determinant, which can identify that which subtypes to be
consulted, so with empld a special character can be added which can be used to

identify the concerned subtype.

Summary of Mapping E-R Diagram to Relational DM:
We have up till now studied that how conceptual database design is converted into

logical database. E-R data model is semantically rich and it has number of constructs
for representing the whole system. Conceptual database is free of any data model,
whereas logical database the required data model is chosen; in our case it is relational
data model. First we identified the entity types, weak and strong entity types. Then we
converted those entities into relations. After converting entities into relations then
attributes are identified, different types of attributes are identified. Then relationships
were made, in which cardinality and degree was identified. In ternary relationship,
where three entities are involved, in this as well another relation is created to establish
relationship among them. Then finally we had studied the super and sub types in

which primary key of super type was used for both identity and link.

Data Manipulation Languages

This is the third component of relational data model. We have studied structure,
which is the relation, integrity constraints both referential and entity integrity

constraint. Data manipulation languages are used to carry out different operations like

insertion, deletion and updation of data in database. Following are the two types of languages:

146

© Copyright Virtual University of Pakistan

Database Management System (CS403) VU

Procedural Languages:
These are those languages in which what to do and how to do on the database is

required. It means whatever operation is to be done on the database that has to be told

that how to perform.

Non -Procedural Languages:
These are those languages in which only what to do is required, rest how to do is done

by the manipulation language itself.

Structured query language (SQL) is the most widely language used for manipulation
of data. But we will first study Relational Algebra and Relational Calculus, which are

procedural and non — procedural respectively.

Relational Algebra

Following are few major properties of relational algebra:

o Relational algebra operations work on one or more relations to define
another relation leaving the original intact. It means that the input for
relational algebra can be one or more relations and the output would be

another relation, but the original participating relations will remain

unchanged and intact. Both operands and results are relations, so output from
one operation can become input to another operation. It means that the input
and output both are relations so they can be used iteratively in different
requirements.

o Allows expressions to be nested, just as in arithmetic. This property is called
closure.

o There are five basic operations in relational algebra: Selection, Projection,
Cartesian product, Union, and Set Difference.

o These perform most of the data retrieval operations needed.

o It also has Join, Intersection, and Division operations, which can be expressed

in terms of 5 basic operations.

Exercise:
- Consider the example given in Ricardo book on page 216 and transform it into

relational data model. Make any necessary assumptions if required.
147

© Copyright Virtual University of Pakistan

